Find the Area between two curves: (Video \#26, is 19 minutes)

http://online.math.uh.edu/HoustonACT/videocalculus/SV3/26-areas.mov
Area under the curve:

Area of a Region Defined by $0 \leq y \leq f(x)$ and $a \leq x \leq b$

Area of a typical rectangle $\Delta A_{i}=f\left(\hat{x}_{i}\right) \Delta x$

$$
\text { Riemann sum } \quad A \approx \sum \Delta A_{i}=\sum f\left(\hat{x}_{i}\right) \Delta x
$$

Area of a typical thin slice $d A=f(x) d x \quad$ The area differential
Definite integral $A=\int_{x=a}^{x=b} d A=\int_{a}^{b} f(x) d x$

Area between two curves:

Area of a Region Defined by $g(x) \leq y \leq f(x)$ and $a \leq x \leq b$

Area of a typical rectangle $\Delta A_{i}=\left(f\left(\hat{x}_{i}\right)-g\left(\hat{x}_{i}\right)\right) \Delta x$
Riemann sum

$$
A \approx \sum \Delta A_{i}=\sum\left(f\left(\hat{x}_{i}\right)-g\left(\hat{x}_{i}\right)\right) \Delta x
$$

Area of a typical thin slice $d A=(f(x)-g(x)) d x$ The area differential
Definite integral $A=\int_{x=a}^{x=b} d A=\int_{a}^{b}(f(x)-g(x)) d x$

Example Find the area of the region bounded by the graphs

 of $y=\sin x$ and $y=\cos x$ between $x=\pi / 4$ and $x=5 \pi / 4$.$$
\Delta A_{i}=\left(\sin \hat{x}_{i}-\cos \hat{x}_{i}\right) \Delta x
$$

$$
d A=(\sin x-\cos x) d x
$$

$$
A=\int_{\pi / 4}^{5 \pi / 4}(\sin x-\cos x) d x
$$

Answer to page 3

Example Find the area of the region bounded by the graphs of $y=\sin x$ and $y=\cos x$ between $x=\pi / 4$ and $x=5 \pi / 4$.

$$
\begin{aligned}
& \Delta A_{i}=\left(\sin \hat{x}_{i}-\cos \hat{x}_{i}\right) \Delta x \\
& d A=(\sin x-\cos x) d x \\
& A=\int_{\pi / 4}^{5 \pi / 4}(\sin x-\cos x) d x=(-\cos x-\sin x) \\
&=\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\right)-\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\right)=2 \sqrt{2}
\end{aligned}
$$

Answer to Page 4

Example Find the area of the

 region bounded by the graphs of $y=x^{2}$ and $y=x+2$.Points of $\quad x^{2}=x+2$ intersection

$$
x^{2}-x-2=0
$$

$$
(x+1)(x-2)=0
$$

$$
x=-1,2
$$

$$
\begin{aligned}
A & =\int_{-1}^{2}\left(x+2-x^{2}\right) d x \\
& =\left.\left(\frac{1}{2} x^{2}+2 x-\frac{1}{3} x^{3}\right)\right|_{-1} ^{2}
\end{aligned}
$$

$$
d A=\left(x+2-x^{2}\right) d x
$$

$$
=\left(2+4-\frac{8}{3}\right)-\left(\frac{1}{2}-2+\frac{1}{3}\right)=8-\frac{9}{3}-\frac{1}{2}=\frac{9}{2}
$$

Example Find the area of the

 region bounded by the graphs of $y=x^{2}$ and $y=x+2$.Points of

$$
x^{2}=x+2
$$

intersection

$$
x^{2}-x-2=0
$$

$$
\begin{gathered}
(x+1)(x-2)=0 \\
x=-1,2
\end{gathered}
$$

$$
A=\int_{-1}^{2}\left(x+2-x^{2}\right) d x
$$

$d A=\left(x+2-x^{2}\right) d x$

Lets talk about dX (Vertical Rectangle) and dy (Horizontal Rectangle) options

Example Find the area of the region bounded by the graphs of

$$
y=2 \sqrt{x}, y=0, \text { and } y=3 \sqrt{x-5}
$$

Using dx (Vertical Rectangle):

Example Find the area of the region bounded by the graphs of

$$
y=2 \sqrt{x}, y=0, \text { and } y=3 \sqrt{x-5}
$$

$$
\begin{array}{rl}
A=\int_{0}^{5} & 2 \sqrt{x} d x \\
& +\int_{5}^{9}(2 \sqrt{x}-3 \sqrt{x-5}) d x
\end{array}
$$

Using dy (Horizontal Rectangle)

Example Find the area of the region bounded by the graphs of

$$
y=2 \sqrt{x}, y=0, \text { and } y=3 \sqrt{x-5}
$$

$$
\begin{aligned}
d A & =\left(\frac{1}{9} y^{2}+5-\frac{1}{4} y^{2}\right) d y \\
& =\left(5-\frac{5}{36} y^{2}\right) d y \\
& =\frac{5}{36}\left(36-y^{2}\right) d y
\end{aligned}
$$

$$
A=\frac{5}{36} \int_{0}^{6}\left(36-y^{2}\right) d y
$$

Solve the problem below without a calculator: Page 6 Example Find the area of the region bounded by the graphs of $y=x^{2}$ and $y=x^{5}$ two ways.

Example Find the area of the region bounded by the graphs of $y=x^{2}$ and $y=x^{5}$ two ways.

Vertical slices:

Integration with respect to x

$$
\begin{aligned}
& d A=\left(x^{2}-x^{5}\right) d x \\
& A=\int_{0}^{1}\left(x^{2}-x^{5}\right) d x=\left.\left(\frac{1}{3} x^{3}-\frac{1}{6} x^{6}\right)\right|_{0} ^{1}=\frac{1}{3}-\frac{1}{6}=\frac{1}{6}
\end{aligned}
$$

Horizontal slices: Integration with respect to y

$$
\begin{aligned}
& d A=\left(y^{1 / 5}-y^{1 / 2}\right) d y \\
& A=\int_{0}^{1}\left(y^{1 / 5}-y^{1 / 2}\right) d y=\left.\left(\frac{5}{6} y^{6 / 5}-\frac{2}{3} y^{3 / 2}\right)\right|_{0} ^{1}=\frac{5}{6}-\frac{2}{3}=\frac{1}{6}
\end{aligned}
$$

Answer to page 7:

Example Find the area of the region bounded by the graphs of $y=3\left(1-x^{2}\right)$ and $y=4\left(1-x^{2}\right)^{2}$.

$$
\begin{gathered}
\text { Intersections } \\
3\left(1-x^{2}\right)=4\left(1-x^{2}\right)^{2} \\
3=4\left(1-x^{2}\right) \\
3=4-4 x^{2} \\
4 x^{2}=1 \\
x= \pm \frac{1}{2}
\end{gathered}
$$

$$
\begin{aligned}
\frac{1}{2} A & =\int_{0}^{1 / 2}\left(4\left(1-x^{2}\right)^{2}-3\left(1-x^{2}\right)\right) d x+\int_{1 / 2}^{1}\left(3\left(1-x^{2}\right)-4\left(1-x^{2}\right)^{2}\right) d x \\
& =\int_{0}^{1 / 2}\left(4 x^{4}-5 x^{2}+1\right) d x+\int_{1 / 2}^{1}\left(-4 x^{4}+5 x^{2}-1\right) d x \\
& =\left.\left(\frac{4}{5} x^{5}-\frac{5}{3} x^{3}+x\right)\right|_{0} ^{1 / 2}+\left.\left(-\frac{4}{5} x^{5}+\frac{5}{3} x^{3}-x\right)\right|_{1 / 2} ^{1} \\
& =\left(\frac{4}{5} \frac{1}{32}-\frac{5}{3} \frac{1}{8}+\frac{1}{12}\right)-0+\left(-\frac{4}{5}+\frac{5}{3}-1\right)-\left(-\frac{4}{5} \frac{1}{32}+\frac{5}{3} \frac{1}{8}-\frac{1}{2}\right) \\
& =\frac{8}{160}-\frac{10}{24}-\frac{4}{5}+\frac{5}{3}=\frac{1}{20}-\frac{5}{12}-\frac{4}{5}+\frac{5}{3}=\frac{3-25-48+100}{60}=\frac{30}{60}=\frac{1}{2}
\end{aligned}
$$

Solve the problem below without a calculator: Page 7

Example Find the area of the region bounded by the graphs of $y=3\left(1-x^{2}\right)$ and $y=4\left(1-x^{2}\right)^{2}$.

